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The instabilities of convection columns (also called thermal Rossby waves) in a 
cylindrical annulus rotating about its axis and heated from the outside are 
investigated as a function of the Prandtl number P and the Coriolis parameter q*. 
When this latter parameter is sufficiently large, it  is found that the primary solution 
observed at the onset of convection becomes unstable when the Rayleigh number 
exceeds its critical value by a relatively small amount. Transitions occur to columnar 
convection which is non-symmetric with respect to the mid-plane of the small-gap 
annular layer. Further transitions introduce convection flows that vacillate in time 
or tend to split the row of columns into an inner and an outer row of separately 
propagating waves. Of special interest is the regime of non-symmetric convection, 
which exhibits decreasing Nusselt number with increasing Rayleigh number, and the 
indication of a period doubling sequence associated with vacillating convection. 

1. Introduction 
Convection in the form of thermal Rossby waves is the typical flow that occurs in 

rotating fluids when the density is unstably stratified and the vectors of gravity and 
rotation do not coincide. Thermal Rossby waves have thus become of central interest 
to scientists working on the dynamics of planetary liquid cores or on convection in 
the deep atmospheres of the major planets. For a review of some recent work we refer 
to Busse (1982). 

Thermal Rossby waves are also of interest by themselves as a unique phenomenon 
in fluid mechanics. They represent the onset of a convective instability in the form 
of a propagating wave. Because the direction of propagation is determined by the 
direction of rotation, the time dependence is quite different from other forms of 
oscillating convection. This difference manifests itself in the nonlinear properties. In  
an earlier paper (Busse & Or 1986; hereinafter referred to as I)  we have shown that 
a mean zonal flow is generated by thermal Rossby waves. The time dependence and 
the growth of a mean zonal shear cause a saturation of the convective heat transport. 
In  this paper it will be shown that both effects are amplified by a transition to a new 
form of convection. This secondary form of convection is characterized by decreasing 
heat transport with increasing Rayleigh number. 

The analysis of this paper is restricted to two-dimensional convection, since 
three-dimensional modes are not possible until much higher Rayleigh numbers are 
reached than are considered in this paper (Busse 1970). The restriction to two 
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dimensions permits the analysis of the stability of the secondary form of convection 
and the study of finite-amplitude tertiary solutions. Of particular interest are the 
vacillating solutions found in this connection. 

Section 2 gives an outline of the basic equations and the numerical Galerkin method 
used to solve them. As in I ,  the case of vanishing curvature of the conical axial 
boundaries of the annulus and the case of finite curvature will be considered 
separately. Most of the attention will be focused on the former case. Instabilities of 
the primary solution are discussed in $3, and secondary solutions and their stability 
explored in $4. Section 5 describes a few cases in which finite-amplitude tertiary 
solutions have been obtained. In  $6 the stability problem of thermal Rossby waves 
in the presence of finite curvature is described. The paper closes with a discussion 
of possible relationships between the theoretical solutions and dynamical phenomena 
observed on the major planets. 

2. Basic equations and method of solution 
We consider motions introduced by centrifugal buoyancy in a cylindrical annulus 

of height L and thickness D with a mean radius ro. The temperatures TI and T, 
(T, > T,) are kept constant on the inner and outer walls, respectively. A dimensionless 
description of the problem is obtained by using D as the lengthscale, D 2 / v  as the 
timescale where v is the kinematic viscosity, and (T, - TI)  P as the temperature scale. 
Since the small-gap approximation, D ro, is used, a Cartesian system of coordinates 
may be used with the x, y, z-coordinates pointing in the radial, azimuthal and axial 
directions, respectively. Stress-free conditions are satisfied by the velocity field on 

(2.1) w z = - w  = O  a t z = f $ .  

The boundaries in the axial direction are of conical shape and are assumed to be 
symmetric with respect to the equatorial plane of the annulus 

the cylindrical surfaces, a 2  

3x2 

(2 .2)  
1 L  

w , + v o ( l + E z ) w z  = 0 at z = k--, 
2 0  

where E describes the radial curvature of these boundaries. The tangent yo of the mean 
angle of inclination with respect to the equatorial plane is considered to be a small 
parameter of the problem which allows us to describe the velocity as nearly 
geostrophic, 

where d is of the order vo smaller than the geostrophic part. As shown in I, the 
equation for $ can be written in the form 

v =Vxk$(x ,y , t )+d,  (2 .3)  

(2+.”$---$-) a a a  ( 2 . 4 ~ ~ )  
at ay ax ax ay 

where A ,  denotes the two-dimensional Laplacian and 0 is the deviation of the 
temperature from the conduction solution of the basic static state. The heat equation 
for B assumes the form 

P - + - i l . - - - i l . - ) s + - i l . - ~ ~ e = o .  a a  a a a  a 
(at ay ax ax ay ay 

(2 .4b )  
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yD3B2ro(T2 - TI) 
Rayleigh number R z 

VK 

4p0 QD3 
VL ' 

Coriolis parameter p* = 
V 

K 
Prandtl number P = -, 

where y is the coefficient of thermal expansion, B is the rate of rotation and K is the 
thermal diffusivity. The parameter p* is a measure of the dynamic constraint of 
rotation. In  analogy to the P-plane effect used in meteorology, the parameter p* 
describes the effect of the stretching of vortex tubes as they change their distance 
from the axis of rotation. While p o  is small, p* will be assumed to be of the order 
one or larger in the present study. 

For the numerical analysis of (2.4) we use the same Galerkin method as in I, i.e. 
we search for solutions of the form 

$ = sinZn(x++){ci,, cosna(y-ct)+d,, sinna(y-ct)} 

+f; C ci,,1x(x2-x), ( 2 . 5 ~ )  
1-odd 

o = sinZn(z++)&, cosna(y-ct)+6,, sinna(y-ct)}. (2.5b) 
1 .  n 

I n  contrast to I,  the coefficients ci,,, a',,, 6,,, 6,, may be functions of the time t .  The 
second sum in ( 2 . 5 ~ )  is added in order that the mean zonal flow component satisfies 
periodic boundary conditions across the layer for f ;  = 1. For 6 = 0 the case of 
stress-free boundaries is obtained, which will be studied in a few cases; but unless 
otherwise specified f; = 1 will be assumed. The case 6 = 1 can also be motivated by 
the application of the theory to a laboratory annulus with rigid boundary conditions. 
I n  that  case stress-free boundary conditions can be justified for the fluctuating 
component of motion at least in the asymptotic case of high p* because of the small 
azimuthal wavelength (Busse 1970). For the mean component of motion the rigid 
boundary conditions are satisfied for f ;  = 1 if an appropriate constant velocity is 
added which will not affect the solution because of the Galilean invariance of the 
problem. 

After inserting expansions (2.5) into (2.4), multiplying those equations by the 
expansion functions and averaging them over the domain -a  < x < 4, - 00 < y < 00 

we obtain a system of nonlinear equations for the unknowns ci,,, d,,,  6,,, 6,,, 

f r i . ~  174 11 
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The summation convention has been assumed in writing equations (2 .6) .  The matrices 
I, r, [ J ,  J ,  c, and H represent lengthy expressions and will not be given here 
explicitly. Because of the translational invariance of the problem in the y-direction 
it is convenient to fix the phase of one of the terms in the representation ( 2 . 5 ~ )  with 
respect to the coordinate system drifting with the appropriate phase speed c .  We 
arbitrarily set d,,  equal to zero and use (2 .6b)  with k = 1, m = 1 to determine c .  R, 
a, P and r,~* are regarded as prescribed parameters. 

Three types of analysis have been performed on the basis of (2.5) and (2 .6) .  First 
solutionswith time-independent coefficientsci.,,, a’,,, 6,,, 6,, areobtained byaNewton- 
Raphson iteration. These solutions correspond to steadily drifting nonlinear Rossby 
waves and will be called stationary solutions. In a second step the stability of these 
solutions is analysed by superimposing infinitesimal disturbances, 

1 .  n 
+&xz-z) Z Zna”,, exp{id(y-ct)+vt}, (2.7a) 

,=odd 

8 =  z sinZn(x++)6,, exp{i(na+d) ( y - c t ) + u t } ,  (2.7b) 
1 ,  n 

on to the stationary solutions q+, 8. The derivation of the equations for the unknowns 
a“,,, 6,, is analogous to that of (2 .6) .  The equations are linear and homogeneous and 
the time derivative is replaced by u. The condition that the determinant of the 
coefficients of a”,,, &,, vanishes yields an equation for the eigenvalue u. Whenever the 
real part vr of v becomes positive as a function of the Floquet parameter d, the 
stationary solution @, 8 is unstable. When all values ur are negative, the stationary 
solution can be considered to be stable, since expressions (2 .7)  represent the most 
general form of two-dimensional disturbances. Growing three-dimensional modes 
occur only at Rayleigh numbers which exceed the critical value R, for two- 
dimensional ones by a factor of the order (r,~*)-b according to the linear asymptotic 
analysis of I and earlier work mentioned there. Three-dimensional disturbances will 
thus be relevant only at much higher values of R than are of interest in the present 
study, provided r , ~ *  is sufficiently large. 

When the stationary solution becomes unstable, a different stationary solution 
may bifurcate from it, or a more complicated time-dependent solution may replace 
it. Solutions of the latter type can be analysed by solving (2 .6)  for time-dependent 
coefficient &,,(t), d l n ( t ) ,  6,,(t) and b,,(t). A semi-implicit Runge-Kutta scheme is 
employed for the forward integration in time of the equations. The vacillating 
solutions described in $5 are obtained in this way. It must be admitted, however, 
that this method of solution requires that the solution be periodic in y. By replacing 
a by an appropriate small rational fraction of it, periodicity intervals different from 
that of the unstable stationary solution can be accommodated. But because of 
computational expenses and problems of numerical convergence this possibility is of 
limited use. 

For the actual computational realizations of the three types of analysis outlined 
above the systems of equations must be truncated. As in I, equations and coefficients 
ti,, etc. are neglected if the inequality, 

l + n  > N T ,  

holds where NT is a suitably chosen positive integer. For most of the computations 
of the present study NT = 4, NT = 5 or NT = 6 have been used. To test the 
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FIQURE 1 .  Stability boundaries (solid lines) of the primary solution for P = 1, E = 0, T* = 2800. 
Solutions are stable within the region bounded by the side-band (SB) and mean-flow (MF) 
instabilities. The lowermost curve is the neutral curve for onset of convection. The dashed lines 
correspond to the stability boundaries of the secondary solution discussed in $4. The numbers refer 
to the values of d for the growing disturbances. d = 0 on curves without numbers. 

convergence of the solutions, NT = 8 has sometimes been used, especially for the 
primary solution and the analysis of its stability, since symmetry properties reduce 
the number of coefficients in this case. In general i t  has been found that the 
replacement of NT = 6 by NT = 8 causes insignificant changes in the solutions in 
the part of the parameter space that has been investigated. We shall return to the 
question of convergence a t  several points later in this paper. 

3. Instabilities of symmetric thermal Rossby waves 
It has been shown in I that for G = 0 the system of equations (2.6) admits a subclass 

of solutions for which all coefficients d,,, d,,, i$,, gtn with l+n = odd vanish. This 
subclass describes symmetric thermal Rossby waves and includes the solution which 
replaces the static state when the convection instability sets in. In this section the 
instabilities of symmetric thermal Rossby waves will be described. 

Because of the symmetry of the stationary solution the solutions of the stability 
equations separate into two classes : the class of ‘even ’ disturbances has vanishing 
coefficients d,,, 6,, whenever 1 +n is odd, while the opposite is true for the class of 
‘odd ’ disturbances. A particularly interesting instability belongs to the latter class. 
It is called the mean-flow instability, since its interaction with the stationary solution 
gives rise to a strong mean zonal flow, as we shall discuss in more detail in the next 
section. This instability is characterized by the property that ur reaches is maximum 
value for d = 0. the instability thus does not exhibit the tendency to change the 
wavelength of the stationary solution. The mean-flow instability limits the region of 
symmetric thermal Rossby waves for Prandtl numbers of the order unity and for 
values of q* of the order lo3. A typical case is shown in figure 1 (the dashed lines 
in figures 1 and 2 should be ignored for the discussion of this section). 

The parabolic stability boundary (SB) shown in figure 1 corresponds to a side-band 
instability, i.e. i t  is described by even disturbances which grow for small but finite 
values of d .  Close to the critical point (Re, a,) the instability resembles in all respects 
the Eckhaus instability of ordinary Rayleigh-BBnard convection (Busse 197 1,1978).  
A difference develops, however, as the right branch of the stability boundary moves 
away from the critical point. The stability boundary no longer corresponds to 
vanishing d ,  but to finite values of d as indicated in the figure. The side-band 

11-2 
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FIGURE 2. Same as figure 1 in the case P = 0.3. A new instability of the primary solution is the 
vacillation instability (VI), which occurs in modified form for the secondary solution as well. 
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FIGURE 3. The variation of the mean-flow-instability boundary as a function of v* for P = 0.3 and 
P = 1. The other parameters are E = 0, a = a,. The neutral curve R = R, and another stability 
boundary in the upper left of the figure are shown for P = 1. The numbers along the latter curve 
refer to values of d. 

instability limits the range of realizable wavenumbers a and has the tendency to shift 
the unstable solution towards a = a,. According to the dispersion relation of linear 
thermal Rossby waves (see (2.10) of I), the frequency w = ac varies with a such that 
ac decreases when a increases and vice versa. As a consequence, growing side-band 
disturbances are associated with a positive value ui for positive d .  This is easily 
understood since for a > a, the coefficient a",-, dominates in the side-band distur- 
bance and the total frequency ui + (a - d )  c is increased. For a < a, the coefficient a",, 
dominates and the frequency (a+d) c-'ui is decreased for positive ui. 
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For low Prandtl numbers another instability with growing odd disturbances 
appears and competes with the mean-flow instability. The new instability corresponds 
to a finite value of d as indicated in figure 2 and exhibits negative values of ui even 
in the limit of vanishing d.  For reasons to be discussed in the next section we shall 
call this instability the vacillation instability. Because the growing disturbances are 
characterized by a small, but distinctly finite value of d,  it is not possible to 
incorporate modes with the wavenumber na + d for n = 0,1, . . . , into our numerical 
scheme without increasing the cost of computing enormously. It may be possible, 
however, to follow the nonlinear evolution of the disturbances by using asymptotic 
methods based on the property d 6 a. 

The dependence of the stability boundaries on y* is indicated in figure 3.  The graph 
confirms the expectation that convection rolls with the critical wavenumber a, are 
stable with respect to two-dimensional disturbances in the limit of vanishing y* which 
corresponds to the Rayleigh-BBnard case. There is still another instability not 
mentioned so far which limits the stability in the upper left-hand corner of the figure. 
Since this instability occurs in a region of the parameter space which is of lesser 
interest, i t  has not been studied in much detail. It corresponds to odd disturbances 
with a finite value of d.  The mean-flow instability occurs at an approximately constant 
value of R- R, according to the figure, once a critical value of y* has been exceeded. 
A t  values of y* of the order lo4 a new instability corresponding to a large positive 
value of ui precedes the mean-flow instability. This instability also corresponds to 
odd disturbances and exhibits a value of d which varies relatively little within the 
range 1.5 5 d 5 2.0 for all values of y* and P investigated in this paper. The 
maximum of the growth rate corresponding to this instability is even noticeable at  
lower values of y* for P z 0.3. But in that region the instability is preceded by the 
vacillation instability, which corresponds to another maximum of the growth rate 
at lower values of d.  

The majority of the stability computations have been done with NT = 6 (7)  for 
‘even’ (‘odd’) disturbances. Eigenvalues u have been computed on a grid in the 
(R, a)-plane and the actual position of the stability boundary has been determined 
by interpolation. Because of the smooth dependence of the eigenvalues u on the 
parameters of the problem, the interpolation introduces a negligible error. By 
comparing the position of the stability boundary with results obtained for a higher 
truncation we estimate that the position is generally accurate within a few per cent 
of the supercritical Rayleigh number, R- R,. 

4. Secondary stationary solutions and their stability properties 
Since the mean-flow instability corresponds to d = 0, ui = 0, it is relatively easy to 

follow the bifurcating solution. This solution differs from the primary symmetric 
solution in that the coefficients with odd l + n  no longer vanish. There are actually 
two secondary solutions; the second solution is obtained by reversing the sign of all 
coefficients &,,, a’,,, 6,,, with odd l+n. The two solutions are transformed into 
each other by reflection across the mid-plane of the layer. The introduction of 
coefficients with odd I + n by the secondary solution is analogous to the effect of finite 
curvature on the primary solution. In both cases the convection eddies are shifted 
towards one or the other side of the layer, and strong Reynolds stresses are developed 
owing to the tilt of the eddies. Figure 4 shows the mean-flow profile for one of the 
two secondary solutions in the case of both stress-free and periodic boundary 
conditions. The graph for the other solution is obtained by replacing x by -x. The 
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FIQURE 4. Profile of the mean zonal flow component of the secondary solution for stress-free and 
periodic boundary conditions. Parameters are R = 7 .  lo4, E = 0, P = 1, a = 8. The Nusselt number 
Nu and the drift rate are Nu = 1.280, c = 16.227 in the case of periodic boundary conditions and 
Nu = 1.166, c = 22.27 in the case of stress-free boundary conditions. 

FIQURE 5.  Steady streamline pattern of secondary solution as seen from the drifting frame of 
reference for P = 1, R = 7 .  lo4, I* = 2800, a = 8, E = 0. ( a )  Shows streamlines without mean flow 
component, ( b )  includes mean-flow component. 

streamlines of the secondary solution with and without the mean-flow component are 
shown in figure 5 ( a ,  b ) .  Since the convection tends to be strongest where the mean 
zonal shear is strongest, only convective eddies with the same sign of vorticity as the 
vorticity of the zonal shear are visible when the shear is sufficiently strong. 

That convection is especially strong on the side where the second derivative of the 
mean flow, a2U/ax2, is negative can be understood in terms of a decrease of the 
constraint of rotation. As can be seen from (2 .4a) ,  the term a2U/az2 .a~/ay  gives 
rise to a term of the same form but opposite sign as the term proportional to T * ,  
provided q* is positive as has been assumed throughout this analysis. 
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FIQURE 6. Nusselt number Nu and drift rate e of the secondary solution bifurcating from the 
corresponding curves of the primary solution. Also shown are c and the time average of Nu-  1 for 
the tertiary solution in the form of vacillations which bifurcate from the secondary solution. The 
latter curves are given only for the truncation NT = 4 (dashed lines). Parameters are P = 1, 
v* = 2800, a = a, % 9.4. 

The tendency of the secondary solution to shift to one side of the layer has a 
dramatic effect on the convective heat transport. 

Because the heat must be transported by conduction in the region where 
convection is weak, the shift of the convection eddies inhibits the heat flux. Figure 
6 demonstrates that the heat flux actually decreases with increasing Rayleigh number 
as the secondary solution bifurcates from the primary one. Since the work done by 
the buoyancy force is proportional to the convective heat transport, the decrease of 
the heat transport leads to a concurrent decrease of the amplitude of convection. 

Even though the curvature of the mean flow profile releases some of the rotational 
constraint, the secondary stationary solution does not appear to be very stable 
because of its inefficient heat transport. The stability analysis does indeed show that 
the domain of stability in the parameter space is relatively small. Figure 1 shows the 
stability region for P = 1 .  For lower values of P the region of stability rapidly 
decreases and at  P = 0.3 there is only a minute region of stable secondary solutions 
left, as shown in figure 2 .  The main instability responsible for limiting the stability 
of the secondary solution is the vacillation instability. The name indicates the 
vacillation phenomenon that is introduced by the instability, as will be discussed 
below. The disturbances of maximum growth correspond to values of d of the order 
0.1 nearly independent of q*. The corresponding value of gi is about one third of ac 
for q* = 2800 and varies little with d .  

In  addition to the vacillation instability there are the usual side-band mechanisms 
of instability. The corresponding boundaries are seen as dashed lines in figure 1 for 
P = 1 , ~ *  = 2800. As in the case of the primary solution, the stability boundary on 
the left-hand side corresponds to disturbances with vanishing d ,  while on the 
right-hand side the critical disturbances have finite values of d. This difference is also 
noticeable in the discontinuities of the side-band stability boundaries at  the onset 
of the secondary solution. While on the right-hand side only the slope changes 
discontinuously, on the left-hand side the stability boundary itself is shifted by a 
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finite amount. The latter feature can be understood in terms of the presence of the 
neutral displacement disturbance, $ = a$/ay, # = aO/ay, from which the left side- 
band instability is derived as a perturbation. 

The situation is more complicated at Prandtl numbers significantly larger than 
unity. For P 2 2.5 the maximum growth rate cr of the mean-flow instability is no 
longer obtained for vanishing d. Thus secondary solutions with the same azimuthal 
wavelength as the primary solution are not physically realistic. Instead, a modulated 
secondary solution must be expected, with d describing the wavenumber of the 
modulation. Since there are two secondary solutions, the modulation may be 
understood as a periodic sequence of one secondary solution alternating with the 
other. The mean-flow component of the secondary solution is changed into a 
large-scale circulation with the wavelength 2n/d. This interpretation is supported by 
the fact that by far the largest disturbance coefficient in magnitude is d,, in contrast 
to the side-band disturbances where B,-,, B,, dominate. Since eddies with relatively 
large scales in the azimuthal direction seem to predominate in the atmospheres of 
the major planets, the large-scale circulations are of particular interest. The study 
of their finite-amplitude properties requires a new numerical scheme, which permits 
the simultaneous representation of small- and large-scale eddies. The development 
of such a scheme will be a future project of the authors. 

5. Tertiary solutions 
It has not been possible to find stable tertiary stationary solutions which would 

replace the unstable secondary solutions. For this reason the more expensive 
approach for the solution of (2.6) by forward integration in time has been used. Since 
most instabilities correspond to finite values of d ,  it becomes cumbersome to follow 
the evolution in time of the corresponding growing disturbances. As has been 
mentioned before, the numerous modes that interact as the disturbance amplitude 
becomes finite cannot readily be represented in the numerical scheme that has been 
employed in this paper. Fortunately the growth rate of the vacillation instability in 
the case of the secondary solution changes very little from its maximum value when 
d approaches zero. It thus seems justified to restrict the attention to disturbances 
with d = 0, which can be analysed by including the same modes in the time 
integration scheme that have been used for the representation of the stationary 
secondary solution. In  addition to its simplicity from the computational point of 
view, the choice of d = 0 can also be defended on the basis that only discrete values 
of d can be admitted in realistic situations when periodic conditions in the y-direction 
apply. Moreover, the value of d at which the growth rate reaches its maximum moves 
from 0.1 towards zero beyond the stability boundary in the case investigated here. 

The finite value of ci a t  d = 0 indicates that the instability introduces a second 
frequency into the problem. The integration in time of (2.6) shows that the new time 
dependence assumes the form of a vacillation, i.e. the main effect is a periodic 
variation in time of the amplitude of convection. There is also a phase shift, however, 
between even and odd coefficients of the solution as indicated in figure 7 .  Thus a 
periodic ‘breathing ’ occurs as the convection eddies shift their position with respect 
to the median plane of the layer. This ‘breathing’ may be responsible for the increase 
in the heat transport exhibited by the vacillating solution as shown in figure 7. By 
shifting eddies close to both boundaries in an alternating fashion the distance over 
which the heat is carried by conduction is kept small. 

A particularly striking feature of the vacillation is the apparent period-doubling 
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FIGURE 7. The time dependence of the functions --&, (I), (i2f,+&f,)i (11). (i2:2+&f2)i (111), and 
N u -  1 (IV) in the case of the vacillating solution for P = 1 ,  T* = 2800, R = 3.8. lo4, a = 9.4, 
NT = 5.  The period of vacillations is approximately six times the drift period 2n/ac where 
c = 14.55. 
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FIGURE 8. Transition from the unstable secondary solution to the vacillating solution with 
quadrupled period at P = 1 ,  T* = 2800, R = 3.9. lo4, a = 9.4, NT = 5. The roman numerals refer 
to the functions as in figure 7. 

sequence. At R = 3.874 x lo4 for P = 1 ,  y* = 2800, a = 9.4 a bifurcation to  vacil- 
lations with twice the period of the original nearly sinusoidal vacillations takes place 
and a further bifurcation corresponding to a quadrupling of the period occurs a t  
R = 3.899*104 (figure 8). It is likely that further period doublings do occur. But the 
demands for numerical accuracy and thus the costs of computations increase rapidly, 
and an alternative method of computation based on a Fourier analysis in time 
appears to be more suitable for the investigation of the period-doubling phenomenon. 
The solutions obtained at somewhat higher values of R exhibit slightly aperiodic 
behaviour and become increasingly chaotic as R is increased. While the Rayleigh 
number for the onset of the period-doubling sequence depends slightly on the 
truncation parameter, the phenomenon itself occurs in the same manner for all 
truncations that have been used. The above quoted values were obtained for N ,  = 5, 
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FIQURE 9. Stability boundaries of the primary solution in the case of finite curvature, B = 1 for 
P = 1 ,  'I* = 2800. The region of stable columns is restricted by the onset of side-band instabilities 
(SB) and the double-column instability (DC). The numbers refer to values of d at the stability 
boundaries. 

the corresponding values for the bifurcation points in the NT = 4 approximation are 
lower by only about 0.028. lo4. Other kinds of truncation, as for example E < 2, 
n < 4, give similar results. We therefore conclude that the period-doubling pheno- 
menon is an intrinsic property of the solutions which is not likely to disappear as NT 
is increased. 

6. Stability and transitions at finite curvature 
In  the case 8 += 0 even the basic solution exhibits asymmetries with respect to the 

median plane of the annular layer, as has been discussed in I. When E becomes 
sufficiently large, the convection mode evolving from a double layer of convection 
columns in the limit E = 0 competes with the normal single-column-layer mode. When 
E reaches 1 for 7" = 2800, the former solution dominates, and we shall focus attention 
on it. The stability diagram is shown in figure 9. The main difference in comparison 
with figure 1 is the narrowing of the stability region owing to the side-band 
instabilities. The stability region is limited towards high values of R by the onset of 
the double-column instability. While the primary solution exhibits convection 
columns which are nearly confined to the inner half of the annular layer, the growing 
disturbances of the double-column instability reach a maximum amplitude in the 
outer half of the layer. The growth rate reaches a maximum at the value of d indicated 
in figure 9 and the corresponding value of ci is around -40. These features together 
with a plot of the disturbance streamlines reveal that the instability tends to produce 
a second layer of convection columns which drift at their own rate in the outer half 
of the annular layer. 

The tendency of the instability to form a second layer of convection columns has 
motivated us to  seek solutions of a form in which two representations (2.5) are added, 
one with a = al, the other with a = a2 = a, +d.  The only common terms in the 
representations are those with the coefficients dl0 and 610. This mean-field approxi- 
mation neglects all interactions between fluctuating terms which drift with different 
speed. The resulting form of convection streamlines without the mean flow component 
is shown in figure lO(a). As is evident from the forward inclination of the eddies 
towards the outside, the mean flow is prograde in the outer half of the layer and 
retrograde in the inner half. 

The mean-field approximation introduced here should work well as long as the 
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FIQURE 10. Instantaneous streamlines (a) with, and (b) without, mean-flow component in the case 
of the double-column solution (mean-field approximation). Parameter values are R = 5 .  lo4, B = 1 ,  
V,I* = 2800, P =  1 ,  NU = 1.2751, a1 = 8, c1 = 10.48, a2 = 9.6, c2 = 16.71. 

neglected fluctuating interaction terms are small, since their linear effect on the 
solution vanishes in the time average. In  future work it is planned to make a detailed 
comparison with more exact computations in order to assess the accuracy of the 
approximation. 

7. Discussion 
Because of the numerous external parameters of the problem only a small selection 

of the phenomena exhibited by thermal Rossby waves and their instabilities could 
be described. The large variety of instabilities is surprising since they are all restricted 
to two dimensions. In  the case of Rayleigh-BBnard convection in a layer heated from 
below, two-dimensional instabilities of convection rolls are of minor importance and 
the stability boundaries are entirely determined by instabilities depending on the 
third spatial dimension. The time dependence of convection columns in a rotating 
annulus introduces new possibilities of interaction and thus causes the onset of the 
variety of new instabilities discussed in this paper. As a result of these instabilities 
convection in a rotating annulus attains a complex time dependence as soon as the 
Rayleigh number exceeds the critical value by a small fraction of the latter. This 
behaviour is also shown by experimental observations (Busse & Carrigan 1974; 
Azouni, Bolton & Busse 1986), which indicate persistence of the two-dimensional 
nature of the convection columns while their time dependence and azimuthal 
dependence become more complex as the Rayleigh number is increased. More 
sophisticated measuring techniques are needed in the laboratory experiments, 
however, before a quantitative comparison between experimental observations and 
theoretical predictions can be attempted. 

The research reported in this paper has been motivated in part by the theory of 
convection in the deep atmospheres of Jupiter and Saturn (Busse 1976, 1983). The 
choices of values r* used in the analysis are in part suggested by planetary 
applications for which values of r* in the range lo3 to lo4 appear to be appropriate 
if an eddy viscosity of the order of lo6 m2/s is used (Busse 1983). The new results 
of the present paper indicate that the generation of mean zonal flows is a rather 
pervasive feature of convection in rotating annuli and spheres and that the finite 
curvature is not required for the generation of strong zonal flows. The sign of the 
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curvature parameter E or any analogous parameter describing asymmetries of the 
annular layer will determine the direction of the mean zonal flow, however, and at  
E = 1 the primary solution exhibits a stronger growth of the mean zonal shear with 
increasing R than the secondary solution at E = 0. A surprising property of the 
secondary solution is the decrease of the amplitude of convection and the heat 
transport with increasing Rayleigh number, a feature which has also been observed 
in the experiment of Azouni et al. (1986). From the numerical work reported in $5  it 
appears that this trend can be counteracted by the onset of vacillating convection, 
at  least for Prandtl numbers of order unity. It is of interest to note in this connection 
that vacillation phenomena have also been observed on Jupiter (Hatzes et al. 1981). 
The brown barges which seem to undergo oscillations are most likely centres of 
convective activity since they correspond to deeper regions in the atmospheres above 
which the cloud cover has been lifted. Among the other features observed on Jupiter 
which appear to be connected with convection in the deeper part of the atmosphere 
we mention the train of fairly regularly spaced plumes at the boundary of the north 
equatorial zone. The fact that the plumes trail behind the plume heads indicates that 
the latter propagate like waves in the prograde direction. This is what would be 
expected for thermal Rossby waves. The shape of the plumes resembles that which 
would be generated by the streamlines of figure 5 ( b )  if the plumes emanated from 
the core of the cyclonic eddies. Obviously, the connection between the results of 
theoretical analysis and the observations on Jupiter is speculative at this point, and 
much more detailed models are required for a quantitative comparison with features 
observed on the major planets. The variety of solutions investigated in this paper 
indicates that several types of planetary eddies may be manifestations of columnar 
convection modes. 

The research described in this paper has been supported by the Atmospheric 
Sciences Section of the US National Science Foundation. 
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